It is more faster and easier to pass the Cisco 100-105 exam by using Exact Cisco Cisco Interconnecting Cisco Networking Devices Part 1 (ICND1 v3.0) questuins and answers. Immediate access to the Abreast of the times 100-105 Exam and find the same core area 100-105 questions with professionally verified answers, then PASS your exam with a high score now.

2021 Apr 100-105 practice exam

Q41. DRAG DROP - (Topic 4) 

Drag the definition on the left to the correct term on the right. Not all definitions on the left will be used. 

Answer: 


Q42. - (Topic 3) 

Which address are OSPF hello packets addressed to on point-to-point networks? 

A. 224.0.0.5 

B. 172.16.0.1 

C. 192.168.0.5 

D. 223.0.0.1 

E. 254.255.255.255 

Answer:

Explanation: 

Why does the show ip ospf neighbor Command Reveal Neighbors in the Init State? http://www.cisco.com/en/US/tech/tk365/technologies_tech_note09186a0080093f11.shtml OSPF hello packets have a destination address of 224.0.0.5 (the all ospf routers multicast 

address). 


Q43. - (Topic 1) 

Refer to the exhibit. 

Which option describes how SwitchA will handle the frame just received? 

A. It will drop the frame. 

B. It will forward the frame out of port Fa0/3 only. 

C. It will flood the frame out all ports. 

D. It will flood the frame out of all the ports except Fa0/3. 

Answer:


Q44. - (Topic 3) 

Refer to the exhibit. 

What is the simplest way to configure routing between the regional office network 10.89.0.0/20 and the corporate network? 

A. router1(config)#ip route 10.89.0.0 255.255.240.0 10.89.16.2 

B. router2(config)#ip route 10.89.3.0 255.255.0.0 10.89.16.2 

C. router1(config)#ip route 10.89.0.0 255.255.240.0 10.89.16.1 

D. router2(config)#ip route 0.0.0.0 0.0.0.0 10.89.16.1 

Answer:

Explanation: 

The next hop of the static route should be 10.89.16.1, which is the IP address for router R1 in this example. Since this router is a stub router with only a single connection to the WAN, the simplest thing to do is to configure a single static default route back to the HQ network. 


Q45. - (Topic 3) 

What is the default administrative distance of OSPF? 

A. 90 

B. 100 

C. 110 

D. 120 

Answer:

Explanation: 

Administrative distance is the feature that routers use in order to select the best path when there are two or more different routes to the same destination from two different routing protocols. Administrative distance defines the reliability of a routing protocol. Each routing protocol is prioritized in order of most to least reliable (believable) with the help of an administrative distance value. 

Default Distance Value Table 

This table lists the administrative distance default values of the protocols that Cisco supports: 


Abreast of the times 100-105 free practice exam:

Q46. - (Topic 3) 

Scenario 

Refer to the topology. Your company has decided to connect the main office with three other remote branch offices using point-to-point serial links. 

You are required to troubleshoot and resolve OSPF neighbor adjacency issues between the main office and the routers located in the remote branch offices. 

R1 does not form an OSPF neighbor adjacency with R2. Which option would fix the issue? 

A. R1 ethernetO/1 is shutdown. Configure no shutdown command. 

B. R1 ethernetO/1 configured with a non-default OSPF hello interval of 25: configure no ip ospf hello-interval 25 

C. R2 ethernetO/1 and R3 ethernetO/O are configured with a non-default OSPF hello interval of 25; configure no ip ospf hello-interval 25 

D. Enable OSPF for R1 ethernetO/1; configure ip ospf 1 area 0 command under ethernetO/1 

Answer:

Explanation: 

Looking at the configuration of R1, we see that R1 is configured with a hello interval of 25 on interface Ethernet 0/1 while R2 is left with the default of 10 (not configured). 


Q47. - (Topic 4) 

Which of the following statements are TRUE regarding Cisco access lists? (Choose two.) 

A. In an inbound access list, packets are filtered as they enter an interface. 

B. In an inbound access list, packets are filtered before they exit an interface. 

C. Extended access lists are used to filter protocol-specific packets. 

D. You must specify a deny statement at the end of each access list to filter unwanted traffic. 

E. When a line is added to an existing access list, it is inserted at the beginning of the access list. 

Answer: A,C 

Explanation: 

In an inbound access list, packets are filtered as they enter an interface. Extended access lists are used to filter protocol specific packets. Access lists can be used in a variety of situations when the router needs to be given guidelines for decision-making. These situations include: Filtering traffic as it passes through the router To control access to the VTY lines (Telnet) To identify "interesting" traffic to invoke Demand Dial Routing (DDR) calls To filter and control routing updates from one router to another There are two types of access lists, standard and extended. Standard access lists are applied as close to the destination as possible (outbound), and can only base their filtering criteria on the source IP address. The number used while creating an access list specifies the type of access list created. The range used for standard access lists is 1 to 99 and 1300 to 1999. Extended access lists are applied as close to the source as possible (inbound), and can base their filtering criteria on the source or destination IP address, or on the specific protocol being used. The range used for extended access lists is 100 to 199 and 2000 to 2699. Other features of access lists include: Inbound access lists are processed before the packet is routed. Outbound access lists are processed after the packet has been routed to an exit interface. An "implicit deny" is at the bottom of every access list, which means that if a packet has not matched any preceding access list condition, it will be filtered (dropped). Access lists require at least one permit statement, or all packets will be filtered (dropped). One access list may be configured per direction for each Layer 3 protocol configured on an interface The option stating that in an inbound access list, packets are filtered before they exit an interface is incorrect. 

Packets are filtered as they exit an interface when using an outbound access list. The option stating that a deny statement must be specified at the end of each access list in order to filter unwanted traffic is incorrect. There is an implicit deny at the bottom of every access list. When a line is added to an existing access list, it is not inserted at the beginning of the access list. It is inserted at the end. This should be taken into consideration. For example, given the following access list, executing the command access-list 110 deny tcp 192.168.5.0 0.0.0.255 any eq www would have NO effect on the packets being filtered because it would be inserted at the end of the list, AFTER the line that allows all traffic. 

access-list 110 permit ip host 192.168.5.1 any access-list 110 deny icmp 192.168.5.0 0.0.0.255 any echo access-list 110 permit any any 


Q48. CORRECT TEXT - (Topic 6) 

Answer: Router>enable 

Router#config terminal Router(config)#hostname Apopka 2) Enable-secret password (cisco10): Apopka(config)#enable secret cisco10 3) Set the console password to RouterPass: Apopka(config)#line console 0 Apopka(config-line)#password RouterPass Apopka(config-line)#login Apopka(config-line)#exit 4) Set the Telnet password to scan90: Apopka(config)#line vty 0 4 Apopka(config-line)#password scan90 Apopka(config-line)#login Apopka(config-line)#exit 5) Configure Ethernet interface (on the right) of router Apopka: The subnet mask of the Ethernet network 209.165.201.0 is 27. From this subnet mask, we can find out the increment by converting it into binary form, that is /27 = 1111 1111.1111 1111.1111 1111.1110 0000. Pay more attention to the last bit 1 because it tells us the increment, using the formula: Increment = 2place of the last bit 1 (starts counting from 0,from right to left), in this case increment = 25 = 32. Therefore: Increment: 32 Network address: 209.165.201.0 Broadcast address: 209.165.201.31 (because 209.165.201.32 is the second subnetwork, so the previous IP - 209.165.201.31 - is the broadcast address of the first subnet). -> The second assignable host address of this subnetwork is 209.165.201.2/27 Assign the second assignable host address to Fa0/0 interface of Apopka router: Apopka(config)#interface Fa0/0 Apopka(config-if)#ip address 209.165.201.2 255.255.255.224 Apopka(config-if)#no shutdown Apopka(config-if)#exit 6) Configure Serial interface (on the left) of router Apopka: Using the same method to find out the increment of the Serial network: Serial network 192.0.2.128/28: Increment: 16 (/28 = 1111 1111.1111 1111.1111 1111.1111 0000) Network address: 192.0.2.128 (because 8 * 16 = 128 so 192.0.2.128 is also the network address of this subnet) Broadcast address: 192.0.2.143 -> The last assignable host address in this subnet is 192.0.2.142/28. Assign the last assignable host address to S0/0/0 interface of Apopka router: Apopka(config)#interface S0/0/0 (or use interface S0/0 if not successful) Apopka(config-if)#ip address 192.0.2.142 255.255.255.240 Apopka(config-if)#no shutdown Apopka(config-if)#exit 7) Configure RIP v2 routing protocol: Apopka(config)#router rip Apopka(config-router)#version 2 Apopka(config-router)#network 209.165.201.0 Apopka(config-router)#network 192.0.2.128 Apopka(config-router)#end Save the configuration: Apopka#copy running-config startup-config Finally, you should use the ping command to verify all are working properly! 

Topic 7, Mix Questions 


Q49. - (Topic 3) 

Which two of these statements are true of IPv6 address representation? (Choose two.) 

A. There are four types of IPv6 addresses: unicast, multicast, anycast, and broadcast. 

B. A single interface may be assigned multiple IPv6 addresses of any type. 

C. Every IPv6 interface contains at least one loopback address. 

D. The first 64 bits represent the dynamically created interface ID. 

E. Leading zeros in an IPv6 16 bit hexadecimal field are mandatory. 

Answer: B,C 

Explanation: 

A single interface may be assigned multiple addresses of any type (unicast, anycast, 

multicast). 

Every IPv6-enabled interface must contain at least one loopback and one link-local 

address. 

Optionally, every interface can have multiple unique local and global addresses. 

IPv6 host addresses can be assigned in multiple ways: 

Static configuration 

Stateless autoconfiguration 

DHCPv6 

When IPv6 is used over Ethernet networks, the Ethernet MAC address can be used to 

generate the 64-bit interface ID for the host. This is called the EUI-64 address. 

Since MAC addresses use 48 bits, additional bits must be inserted to fill the 64 bits 

required. 

Reference: 

http://www.cisco.com/en/US/technologies/tk648/tk872/technologies_white_paper0900aecd 

8026003d.pdf 


Q50. - (Topic 3) 

Refer to the graphic. 

R1 is unable to establish an OSPF neighbor relationship with R3. What are possible reasons for this problem? (Choose two.) 

A. All of the routers need to be configured for backbone Area 1. 

B. R1 and R2 are the DR and BDR, so OSPF will not establish neighbor adjacency with R3. 

C. A static route has been configured from R1 to R3 and prevents the neighbor adjacency from being established. 

D. The hello and dead interval timers are not set to the same values on R1 and R3. 

E. EIGRP is also configured on these routers with a lower administrative distance. 

F. R1 and R3 are configured in different areas. 

Answer: D,F 

Explanation: 

This question is to examine the conditions for OSPF to create neighborhood. 

So as to make the two routers become neighbors, each router must be matched with the 

following items: 

1.

 The area ID and its types; 

2.

 Hello and failure time interval timer; 

3.

 OSPF Password (Optional);