Cause all that matters here is passing the Cisco 300 101 route exam. Cause all that you need is a high score of ccnp route 300 101 Implementing Cisco IP Routing exam. The only one thing you need to do is downloading Exambible cisco 300 101 dump exam study guides now. We will not let you down with our money-back guarantee.

Q11. Scenario: 

You have been asked to evaluate an OSPF network setup in a test lab and to answer questions a customer has about its operation. The customer has disabled your access to the show running-config command. 

How many times was SPF algorithm executed on R4 for Area 1? 

A. 1 

B. 5 

C. 9 

D. 20 

E. 54 

F. 224 

Answer:

Explanation: 


Q12. Which address is used by the Unicast Reverse Path Forwarding protocol to validate a packet against the routing table? 

A. source address 

B. destination address 

C. router interface 

D. default gateway 

Answer:

Explanation: 

The Unicast RPF feature helps to mitigate problems that are caused by the introduction of

malformed or forged (spoofed) IP source addresses into a network by discarding IP packets that lack a

verifiable IP source address. For example, a number of common types of denial-of-service (DoS) attacks,

including Smurf and Tribal Flood Network (TFN), can take advantage of forged or rapidly changing source

IP addresses to allow attackers to thwart efforts to locate or filter the attacks. For Internet service providers

(ISPs) that provide public access, Unicast RPF deflects such attacks by forwarding only packets that have

source addresses that are valid and consistent with the IP routing table. This action protects the network of

the ISP, its customer, and the rest of the Internet. Reference: http://www.cisco.com/en/US/docs/ios/12_2/

security/configuration/guide/scfrpf.html


Q13. Refer to the exhibit. The DHCP client is unable to receive a DHCP address from the DHCP server. Consider the following output: 

hostname RouterB ! interface fastethernet 0/0 

ip address 172.31.1.1 255.255.255.0 interface serial 0/0 ip address 10.1.1.1 255.255.255.252 

! ip route 172.16.1.0 255.255.255.0 10.1.1.2 

Which configuration is required on the Router B fastethernet 0/0 port in order to allow the DHCP client to successfully receive an IP address from the DHCP server? 

A. RouterB(config-if)# ip helper-address 172.16.1.2 

B. RouterB(config-if)# ip helper-address 172.16.1.1 

C. RouterB(config-if)# ip helper-address 172.31.1.1 

D. RouterB(config-if)# ip helper-address 255.255.255.255 

Answer:

Explanation: 


Q14. Two aspects of an IP SLA operation can be tracked: state and reachability. Which statement about state tracking is true? 

A. When tracking state, an OK return code means that the track's state is up; any other return code means that the track's state is down. 

B. When tracking state, an OK or over threshold return code means that the track's state is up; any other return code means that the track's state is down. 

C. When tracking state, an OK return code means that the track's state is down; any other return code means that the track's state is up. 

D. When tracking state, an OK or over threshold return code means that the track's state is down; any other return code means that the track's state is up. 

Answer:

Explanation: 


Q15. A corporate policy requires PPPoE to be enabled and to maintain a connection with the ISP, even if no interesting traffic exists. Which feature can be used to accomplish this task? 

A. TCP Adjust 

B. Dialer Persistent 

C. PPPoE Groups 

D. half-bridging 

E. Peer Neighbor Route 

Answer:

Explanation: 

A new interface configuration command, dialer persistent, allows a dial-on-demand routing (DDR) dialer

profile connection to be brought up without being triggered by interesting traffic. When configured, the dialer persistent command starts a timer when the dialer interface starts up and starts the connection when the timer expires. If interesting traffic arrives before the timer expires, the connection is still brought up and set as persistent. The command provides a default timer interval, or you can set a custom timer interval. To configure a dialer interface as persistent, use the following commands beginning in global configuration mode:

Command Purpose

Step 1 Router(config)# interface dialer Creates a dialer interface and number enters interface

Configuration mode.

Step 2 Router(config-if)# ip address Specifies the IP address and mask address mask of the dialer

interface as a node in the destination network to be called.

Step 3 Router(config-if)# encapsulation Specifies the encapsulation type.

type

Step 4 Router(config-if)# dialer string Specifies the remote destination to dial-string class class-name call

and the map class that defines characteristics for calls to this destination.

Step 5 Router(config-if)# dialer pool Specifies the dialing pool to use number for calls to this destination.

Step 6 Router(config-if)# dialer-group Assigns the dialer interface to a group-number dialer group.

Step 7 Router(config-if)# dialer-list Specifies an access list by list dialer-group protocol protocol- number or

by protocol and list name {permit | deny | list number to define the interesting access-list-number} packets that can trigger a call. Step 8 Router(config-if)# dialer

(Optional) Specifies the remote-name user-name

authentication name of the remote router on the destination subnetwork for a dialer interface.

Step 9 Router(config-if)# dialer Forces a dialer interface to be persistent [delay [initial] connected at all

times, even in seconds | max-attempts the absence of interesting traffic.

number]

Reference:

http://www.cisco.com/c/en/us/td/docs/ios/dial/configuration/guide/12_4t/dia_12_4t_book/dia_dia

ler_persist.html


Q16. A network engineer is trying to modify an existing active NAT configuration on an IOS router by using the following command: 

(config)# no ip nat pool dynamic-nat-pool 192.1.1.20 192.1.1.254 netmask 255.255.255.0 

Upon entering the command on the IOS router, the following message is seen on the console: 

%Dynamic Mapping in Use, Cannot remove message or the %Pool outpool in use, cannot destroy 

What is the least impactful method that the engineer can use to modify the existing IP NAT configuration? 

A. Clear the IP NAT translations using the clear ip nat traffic * " command, then replace the NAT configuration quickly, before any new NAT entries are populated into the translation table due to active NAT traffic. 

B. Clear the IP NAT translations using the clear ip nat translation * " command, then replace the NAT configuration quickly, before any new NAT entries are populated into the translation table due to active NAT traffic. 

C. Clear the IP NAT translations using the reload command on the router, then replace the NAT configuration quickly, before any new NAT entries are populated into the translation table due to active NAT traffic. 

D. Clear the IP NAT translations using the clear ip nat table * " command, then replace the NAT configuration quickly, before any new NAT entries are populated into the translation table due to active NAT traffic. 

Answer:

Explanation: 


Q17. Refer to the exhibit. When summarizing these routes, which route is the summarized route? 

A. OI 2001:DB8::/48 [110/100] via FE80::A8BB:CCFF:FE00:6F00, Ethernet0/0 

B. OI 2001:DB8::/24 [110/100] via FE80::A8BB:CCFF:FE00:6F00, Ethernet0/0 

C. OI 2001:DB8::/32 [110/100] via FE80::A8BB:CCFF:FE00:6F00, Ethernet0/0 

D. OI 2001:DB8::/64 [110/100] via FE80::A8BB:CCFF:FE00:6F00, Ethernet0/0 

Answer:

Explanation: 


Q18. The following configuration is applied to a router at a branch site: 

ipv6 dhcp pool dhcp-pool 

dns-server 2001:DB8:1:B::1 

dns-server 2001:DB8:3:307C::42 

domain-name example.com 

If IPv6 is configured with default settings on all interfaces on the router, which two dynamic IPv6 addressing mechanisms could you use on end hosts to provide end-to-end connectivity? (Choose two.) 

A. EUI-64 

B. SLAAC 

C. DHCPv6 

D. BOOTP 

Answer: A,B 

Explanation: 


Q19. Refer to the following output: 

Router#show ip nhrp detail 

10.1.1.2/8 via 10.2.1.2, Tunnel1 created 00:00:12, expire 01:59:47 

TypE. dynamic, Flags: authoritative unique nat registered used 

NBMA address: 10.12.1.2 

What does the authoritative flag mean in regards to the NHRP information? 

A. It was obtained directly from the next-hop server. 

B. Data packets are process switches for this mapping entry. 

C. NHRP mapping is for networks that are local to this router. 

D. The mapping entry was created in response to an NHRP registration request. 

E. The NHRP mapping entry cannot be overwritten. 

Answer:

Explanation: 

Show NHRP: Examples

The following is sample output from the show ip nhrp command:

Router# show ip nhrp

10.0.0.2 255.255.255.255, tunnel 100 created 0:00:43 expire 1:59:16 Type: dynamic Flags: authoritative

NBMA address: 10.1111.1111.1111.1111.1111.1111.1111.1111.1111.11 10.0.0.1 255.255.255.255,

Tunnel0 created 0:10:03 expire 1:49:56 Type: static Flags: authoritative NBMA address: 10.1.1.2 The

fields in the sample display are as follows:

The IP address and its network mask in the IP-to-NBMA address cache. The mask is always

255.255.255.255 because Cisco does not support aggregation of NBMA information through NHRP.

The interface type and number and how long ago it was created (hours:minutes:seconds).

The time in which the positive and negative authoritative NBMA address will expire

(hours:minutes:seconds). This value is based on the ip nhrp holdtime

command.

Type of interface:

dynamic--NBMA address was obtained from the NHRP Request packet.

static--NBMA address was statically configured.

Flags:

authoritative--Indicates that the NHRP information was obtained from the Next Hop Server or router that

maintains the NBMA-to-IP address mapping for a particular destination. Reference: http://www.cisco.com/

c/en/us/td/docs/ios/12_4/ip_addr/configuration/guide/hadnhrp.html


Q20. What is the default OSPF hello interval on a Frame Relay point-to-point network? 

A. 10 

B. 20 

C. 30 

D. 40 

Answer:

Explanation: 

Explanation: Before you troubleshoot any OSPF neighbor-related issues on an NBMA network, it is

important to remember that an NBMA network can be configured in these modes of operation with the ip

ospf network command: Point-to-Point Point-to-Multipoint Broadcast NBMA The Hello and Dead Intervals

of each mode are described in this table: Hello Interval Dead Interval Network Type (secs) (secs) Point-to-

Point 10 40 Point-to-Multipoint 30 120 Broadcast 10 40 Non-Broadcast 30 120

Reference: http://www.cisco.com/c/en/us/support/docs/ip/open-shortest-path-first-ospf/13693- 22.html