It is impossible to pass Cisco 300-101 exam without any help in the short term. Come to Examcollection soon and find the most advanced, correct and guaranteed Cisco 300-101 practice questions. You will get a surprising result by our Leading Implementing Cisco IP Routing practice guides.

2021 Dec cisco ccnp route 300-101 book:

Q51. Which protocol uses dynamic address mapping to request the next-hop protocol address for a specific connection? 

A. Frame Relay inverse ARP 

B. static DLCI mapping 

C. Frame Relay broadcast queue 

D. dynamic DLCI mapping 

Answer:

Explanation: 

Dynamic address mapping uses Frame Relay Inverse ARP to request the next-hop protocol address for a

specific connection, given its known DLCI. Responses to

Inverse ARP requests are entered in an address-to-DLCI mapping table on the router or access server; the

table is then used to supply the next-hop protocol

address or the DLCI for outgoing traffic.

Reference:

http://www.cisco.com/c/en/us/td/docs/ios/12_2/wan/configuration/guide/fwan_c/wcffrely.html


Q52. Which technology was originally developed for routers to handle fragmentation in the path between end points? 

A. PMTUD 

B. MSS 

C. windowing 

D. TCP 

E. global synchronization 

Answer:

Explanation: 


Q53. CORRECT TEXT [SIMULATION] 

Route.com is a small IT corporation that is attempting to implement the network shown in the exhibit. Currently the implementation is partially completed. OSPF has been configured on routers Chicago and NewYork. The SO/O interface on Chicago and the SO/1 interface on NewYork are in Area 0. The loopbackO interface on NewYork is in Area 1. However, they cannot ping from the serial interface of the Seattle router to the loopback interface of the NewYork router. You have been asked to complete the implementation to allow this ping. 

ROUTE.com's corporate implementation guidelines require: 

. The OSPF process ID for all routers must be 10. 

. The routing protocol for each interface must be enabled under the routing process. 

. The routing protocol must be enabled for each interface using the most specific wildcard mask possible. 

.The serial link between Seattle and Chicago must be in OSPF area 21. 

.OSPF area 21 must not receive any inter-area or external routes. 

Network Information 

Seattle 

S0/0 192.168.16.5/30 - Link between Seattle and Chicago 

Secret Password: cisco 

Chicago 

S0/0 192.168.54.9/30 - Link between Chicago and NewYork 

S0/1 192.168.16.6/30 - Link between Seattle and Chicago Secre Password: cisco 

NewYork 

S0/1 192.168.54.10/30 - Link between Chicago and NewYork 

Loopback0 172.16.189.189 

Secret Password: cisco 

Answer: Here is the solution below: 

Explanation: 

Note: In actual exam, the IP addressing, OSPF areas and process ID, and router hostnames may change, but the overall solution is the same. 

Seattle’s S0/0 IP Address is 192.168.16.5/30. So, we need to find the network address and wildcard mask of 192.168.16.5/30 in order to configure the OSPF. 

IP Address: 192.168.16.5 /30 

Subnet Mask: 255.255.255.252 

Here subtract 252 from 2565, 256-252 = 4, hence the subnets will increment by 4. 

First, find the 4th octet of the Network Address: 

The 4th octet of IP address (192.168.16.5) belongs to subnet 1 (4 to 7). 

Network Address: 192.168.16.4 

Broadcast Address: 192.168.16.7 

Lets find the wildcard mask of /30. 

Subnet Mask: (Network Bits – 1’s, Host Bits – 0’s) 

Lets find the wildcard mask of /30: 

Now we configure OSPF using process ID 10 (note the process ID may change to something else in real exam). 

Seattle>enable 

Password: cisco

Seattle#conf t 

Seattle(config)#router ospf 10 

Seattle(config-router)#network 192.168.16.4 0.0.0.3 area 21 

One of the tasks states that area 21 should not receive any external or inter-area routes (except 

the default route). 

Seattle(config-router)#area 21 stub 

Seattle(config-router)#end 

Seattle#copy run start 

Chicago Configuration: 

Chicago>enable 

Password: cisco 

Chicago#conf t 

Chicago(config)#router ospf 10 

We need to add Chicago’s S0/1 interface to Area 21 

Chicago(config-router)#network 192.168.16.4 0.0.0.3 area 21 

Again, area 21 should not receive any external or inter-area routes (except the default route). 

In order to accomplish this, we must stop LSA Type 5 if we don’t want to send external routes. And 

if we don’t want to send inter-area routes, we have to stop LSA Type 3 and Type 4. Therefore we 

want to configure area 21 as a totally stubby area. 

Chicago(config-router)#area 21 stub no-summary 

Chicago(config-router)#end 

Chicago#copy run start 

The other interface on the Chicago router is already configured correctly in this scenario, as well 

as the New York router so there is nothing that needs to be done on that router. 


Q54. A network engineer is investigating the cause of a service disruption on a network segment and executes the debug condition interface fastethernet f0/0 command. In which situation is the debugging output generated? 

A. when packets on the interface are received and the interface is operational 

B. when packets on the interface are received and logging buffered is enabled 

C. when packets on the interface are received and forwarded to a configured syslog server 

D. when packets on the interface are received and the interface is shut down 

Answer:

Explanation: 


Q55. CORRECT TEXT 

JS Industries has expanded their business with the addition of their first remote office. The remote office router (R3) was previously configured and all corporate subnets were reachable from R3. JS Industries is interested in using route summarization along with the EIGRP Stub Routing feature to increase network stability while reducing the memory usage and bandwidth utilization to R3. Another network professional was tasked with implementing this solution. However, in the process of configuring EIGRP stub routing connectivity with the remote network devices off of R3 has been lost. 

Currently EIGRP is configured on all routers R2, R3, and R4 in the network. Your task is to identify and resolve the cause of connectivity failure with the remote office router R3. Once the issue has been resolved you should complete the task by configuring route summarization only to the remote office router R3. 

You have corrected the fault when pings from R2 to the R3 LAN interface are successful, and the R3 IP routing table only contains 2 10.0.0.0 subnets. 

Answer: Here are the solution as below: 

Explanation: 

First we have to figure out why R3 and R4 can not communicate with each other. Use the show running-config command on router R3. 

Notice that R3 is configured as a stub receive-only router. The receive-only keyword will restrict the router from sharing any of its routes with any other router in that EIGRP autonomous system. This keyword will also prevent any type of route from being sent. Therefore we will remove this command and replace it with the eigrp stub command: 

R3# configure terminal 

R3(config)# router eigrp 123 

R3(config-router)# no eigrp stub receive-only 

R3(config-router)# eigrp stub 

R3(config-router)# end 

Now R3 will send updates containing its connected and summary routes to other routers. Notice that the eigrp stub command equals to the eigrp stub connected summary because the connected and summary options are enabled by default. Next we will configure router R3 so that it has only 2 subnets of 10.0.0.0 network. Use the show ip route command on R3 to view its routing table: 

Because we want the routing table of R3 only have 2 subnets so we have to summary sub-networks at the interface which is connected with R3, the s0/0 interface of R4. 

There is one interesting thing about the output of the show ip route shown above: the 10.2.3.0/24, which is a directly connected network of R3. We can’t get rid of it in the routing table no matter what technique we use to summary the networks. Therefore, to make the routing table of R3 has only 2 subnets we have to summary other subnets into one subnet. 

In the output if we don’t see the summary line (like 10.0.0.0/8 is a summary…) then we should use the command ip summary-address eigrp 123 10.2.0.0 255.255.0.0 so that all the ping can work well. 

In conclusion, we will use the ip summary-address eigrp 123 10.2.0.0 255.255.0.0 at the interface s0/0 of R4 to summary. 

R4> enable 

R4# conf t 

R4(config)# interface s0/0 

R4(config-if)# ip summary-address eigrp 123 10.2.0.0 255.255.0.0 

Now we jump back to R3 and use the show ip route command to verify the effect, the output is shown below: 

Note: Please notice that the IP addresses and the subnet masks in your real exam might be different so you might use different ones to solve this question. Just for your information, notice that if you use another network than 10.0.0.0/8 to summary, for example, if you use the command ip summary-address eigrp 123 10.2.0.0 255.255.0.0 you will leave a /16 network in the output of the show ip route command. 

But in your real exam, if you don’t see the line "10.0.0.0/8 is a summary, Null0" then you can summarize using the network 10.2.0.0/16. This summarization is better because all the pings can work well. Finally don’t forget to use the copy run start command on routers R3 and R4 to save the configurations. R3(config-if)# end R3# copy run start R4(config-if)# end R4# copy run start 

If the “copy run start” command doesn’t work then use “write memory.” 


Most up-to-date eclipse 300-101:

Q56. Refer to the exhibit. The DHCP client is unable to receive a DHCP address from the DHCP server. Consider the following output: 

hostname RouterB ! interface fastethernet 0/0 

ip address 172.31.1.1 255.255.255.0 interface serial 0/0 ip address 10.1.1.1 255.255.255.252 

! ip route 172.16.1.0 255.255.255.0 10.1.1.2 

Which configuration is required on the Router B fastethernet 0/0 port in order to allow the DHCP client to successfully receive an IP address from the DHCP server? 

A. RouterB(config-if)# ip helper-address 172.16.1.2 

B. RouterB(config-if)# ip helper-address 172.16.1.1 

C. RouterB(config-if)# ip helper-address 172.31.1.1 

D. RouterB(config-if)# ip helper-address 255.255.255.255 

Answer:

Explanation: 


Q57. A network engineer executes the “ipv6 flowset” command. What is the result? 

A. Flow-label marking in 1280-byte or larger packets is enabled. 

B. Flow-set marking in 1280-byte or larger packets is enabled. 

C. IPv6 PMTU is enabled on the router. 

D. IPv6 flow control is enabled on the router. 

Answer:

Explanation: 

Enabling Flow-Label Marking in Packets that Originate from the Device This feature allows the device to

track destinations to which the device has sent packets that

are 1280 bytes or larger.

SUMMARY STEPS

1.enable

2.configure terminal

3.ipv6 flowset

4.exit

5.clear ipv6 mtu

DETAILED STEPS

Command or Action Purpose

Step 1 enable Enables privileged EXEC mode.

Enter your password if prompted.

Example:

Device> enable

Step 2 configure terminal Enters global configuration mode.

Example:

Device# configure

terminal

Step 3 ipv6 flowset Configures flow-label marking in 1280-byte or larger packets sent by the device.

Example:

Device# configure

terminal

Step 3 ipv6 flowset Configures flow-label marking in 1280-byte or larger packets sent by the device.

Example:

Device(config)# ipv6

flowset

Reference: http://www.cisco.com/c/en/us/td/docs/ios-xml/ios/ipv6_basic/configuration/15- mt/ip6b-15-mtbook/ip6-mtu-path-disc.html


Q58. Scenario: 

You have been asked to evaluate an OSPF network setup in a test lab and to answer questions a customer has about its operation. The customer has disabled your access to the show running-config command. 

How old is the Type 4 LSA from Router 3 for area 1 on the router R5 based on the output you have examined? 

A. 1858 

B. 1601 

C. 600 

D. 1569 

Answer:

Explanation: 


Q59. Under which condition does UDP dominance occur? 

A. when TCP traffic is in the same class as UDP 

B. when UDP flows are assigned a lower priority queue 

C. when WRED is enabled 

D. when ACLs are in place to block TCP traffic 

Answer:

Explanation: 

Explanation: Mixing TCP with UDP It is a general best practice to not mix TCP-based traffic with UDPbased

traffic (especially Streaming-Video) within a single service-provider class because of the behaviors

of these protocols during periods of congestion. Specifically, TCP transmitters throttle back flows when

drops are detected. Although some UDP applications have application-level windowing, flow control, and

retransmission capabilities, most UDP transmitters are completely oblivious to drops and, thus, never lower

transmission rates because of dropping. When TCP flows are combined with UDP flows within a single

service-provider class and the class experiences congestion, TCP flows continually lower their

transmission rates, potentially giving up their bandwidth to UDP flows that are oblivious to drops. This

effect is called TCP starvation/UDP dominance. TCP starvation/UDP dominance likely occurs if (TCP-based) Mission-Critical Data is assigned to the same service-provider class as (UDP-based) Streaming-

Video and the class experiences sustained congestion. Even if WRED is enabled on the service-provider

class, the same behavior would be observed because WRED (for the most part) manages congestion only

on TCP-based flows. Reference: http://www.cisco.com/c/en/us/td/docs/solutions/Enterprise/

WAN_and_MAN/QoS_SRND/QoS- SRND-Book/VPNQoS.html

Topic 2, Layer 2 Technologies 

13. Prior to enabling PPPoE in a virtual private dialup network group, which task must be completed? 

A. Disable CDP on the interface. 

B. Execute the vpdn enable command. 

C. Execute the no switchport command. 

D. Enable QoS FIFO for PPPoE support. 

Answer:

Explanation: 

Enabling PPPoE in a VPDN Group

Perform this task to enable PPPoE in a virtual private dial-up network (VPDN) group.

Restrictions

This task applies only to releases prior to Cisco IOS Release 12.2(13)T.

SUMMARY STEPS

1.enable

2.configure terminal

3.vpdn enable

4.vpdn-group name

5.request-dialin

6.protocol pppoe DETAILED STEPS Command or Action Purpose Step 1 enable Enables privileged EXEC

mode. Example: · Enter your password if Router> enable prompted. Step 2 configure terminal Enters

global configuration mode. Example: Router# configure terminal Step 3 vpdn enable Enables virtual private

dialup Example: networking. Router(config)# vpdn enable Step 4 vpdn-group name Associates a VPDN

group with a Example: customer or VPDN profile. Router(config)# vpdn-group group1 Step 5 request-dialin

Creates a request-dialin VPDN Example: subgroup. Router(config-vpdn)# request-dialin Step 6 protocol

pppoe Enables the VPDN subgroup to Example: establish PPPoE Router(config-vpdn-req-in)# pro tocol

pppoe

Reference:

http://www.cisco.com/en/US/docs/ios/12_2t/12_2t2/feature/guide/ftpppoec_support_TSD_Island

_of_Content_Chapter.html


Q60. Which type of BGP AS number is 64591? 

A. a private AS number 

B. a public AS number 

C. a private 4-byte AS number 

D. a public 4-byte AS number 

Answer:

Explanation: