Your success in Cisco 300 135 tshoot pdf is our sole target and we develop all our tshoot 300 135 braindumps in a way that facilitates the attainment of this target. Not only is our tshoot 300 135 study material the best you can find, it is also the most detailed and the most updated. 300 135 dumps Practice Exams for Cisco CCNP Routing and Switching cisco 300 135 are written to the highest standards of technical accuracy.

Q21. - (Topic 1)

Exhibit:

A network administrator is troubleshooting an EIGRP connection between RouterA, IP address 10.1.2.1, and RouterB, IP address 10.1.2.2. Given the debug output on RouterA, which two statements are true? (Choose two.)

A. RouterA received a hello packet with mismatched autonomous system numbers.

B. RouterA received a hello packet with mismatched hello timers.

C. RouterA received a hello packet with mismatched authentication parameters.

D. RouterA received a hello packet with mismatched metric-calculation mechanisms.

E. RouterA will form an adjacency with RouterB.

F. RouterA will not form an adjacency with RouterB.

Answer: D,F


Q22. - (Topic 16) 

The implementations group has been using the test bed to do a ‘proof-of-concept'. After several changes to the network addressing, routing schemes, a trouble ticket has been opened indicating that the loopback address on R1 (2026::111:1) is not able to ping the loopback address on DSW2(2026::102:1). 

Use the supported commands to isolated the cause of this fault and answer the following questions. 

On which device is the fault condition located? 

A. R1 

B. R2 

C. R3 

D. R4 

E. DSW1 

F. DSW2 

G. ASW1 

H. ASW2 

Answer:

Explanation: 

R2 is missing the needed IPV6 OSPF for interface s0/0/0.23 

Topic 17, Ticket 12 : HSRP Issue 

Topology Overview (Actual Troubleshooting lab design is for below network design) 

. Client Should have IP 10.2.1.3 

. EIGRP 100 is running between switch DSW1 & DSW2 

. OSPF (Process ID 1) is running between R1, R2, R3, R4 

. Network of OSPF is redistributed in EIGRP 

. BGP 65001 is configured on R1 with Webserver cloud AS 65002 

. HSRP is running between DSW1 & DSW2 Switches 

The company has created the test bed shown in the layer 2 and layer 3 topology exhibits. 

This network consists of four routers, two layer 3 switches and two layer 2 switches. 

In the IPv4 layer 3 topology, R1, R2, R3, and R4 are running OSPF with an OSPF process number 1. 

DSW1, DSW2 and R4 are running EIGRP with an AS of 10. Redistribution is enabled where necessary. 

R1 is running a BGP AS with a number of 65001. This AS has an eBGP connection to AS 65002 in the ISP's network. Because the company's address space is in the private range. 

R1 is also providing NAT translations between the inside (10.1.0.0/16 & 10.2.0.0/16) networks and outside (209.65.0.0/24) network. 

ASW1 and ASW2 are layer 2 switches. 

NTP is enabled on all devices with 209.65.200.226 serving as the master clock source. 

The client workstations receive their IP address and default gateway via R4's DHCP server. 

The default gateway address of 10.2.1.254 is the IP address of HSRP group 10 which is running on DSW1 and DSW2. 

In the IPv6 layer 3 topology R1, R2, and R3 are running OSPFv3 with an OSPF process number 6. 

DSW1, DSW2 and R4 are running RIPng process name RIP_ZONE. 

The two IPv6 routing domains, OSPF 6 and RIPng are connected via GRE tunnel running over the underlying IPv4 OSPF domain. Redistrution is enabled where necessary. 

Recently the implementation group has been using the test bed to do a ‘proof-of-concept' on several implementations. This involved changing the configuration on one or more of the 

devices. You will be presented with a series of trouble tickets related to issues introduced during these configurations. 

Note: Although trouble tickets have many similar fault indications, each ticket has its own issue and solution. 

Each ticket has 3 sub questions that need to be answered & topology remains same. 

Question-1 Fault is found on which device, 

Question-2 Fault condition is related to, 

Question-3 What exact problem is seen & what needs to be done for solution 

Solution 

Steps need to follow as below:-

. Since the problem is raised that DSW1 will not become active router for HSRP group 10 

. we will check for the HSRP configuration… 

. From snapshot we see that the track command given needs to be changed under active VLAN10 router 

. Change Required: On DSW1, related to HSRP, under vlan 10 change the given track 1 command to instead use the track 10 command. 


Q23. - (Topic 5) 

Scenario: 

A customer network engineer has edited their OSPF network configuration and now your customer is experiencing network issues. They have contacted you to resolve the issues and return the network to full functionality. 

After resolving the issues between R3 and R4. Area 2 is still experiencing routing issues. Based on the current router configurations, what needs to be resolved for routes to the networks behind R5 to be seen in the company intranet? 

A. Configure R4 and R5 to use MD5 authentication on the Ethernet interfaces that connect to the common subnet. 

B. Configure Area 1 in both R4 and R5 to use MD5 authentication. 

C. Add ip ospf authentication-key 7 BEST to the R4 Ethernet interface that connects to R5 and ip ospf authentication-key 7 BEST to R5 Ethernet interface that connects to R4. 

D. Add ip ospf authentication-key CISCO to R4 Ethernet 0/1 and add area 2 authentication to the R4 OSPF routing process. 

Answer:

Explanation: 

Here, we see from the running configuration of R5 that OSPF authentication has been configured on the link to R4: 

However, this has not been done on the link to R5 on R4: 


Q24. - (Topic 17) 

The implementations group has been using the test bed to do a ‘proof-of-concept' that requires both Client 1 and Client 2 to access the WEB Server at 209.65.200.241. After several changes to the network addressing, routing schemes, DHCP services, NTP services, layer 2 connectivity, FHRP services, and device security, a trouble ticket has been opened DSW1 will not become the active router for HSRP group 10. 

Use the supported commands to isolated the cause of this fault and answer the following questions. 

What is the solution to the fault condition? 

A. Under the interface vlan 10 configuration enter standby 10 preempt command. 

B. Under the track 1 object configuration delete the threshold metric up 1 down 2 command and enter the threshold metric up 61 down 62 command. 

C. Under the track 10 object configuration delete the threshold metric up 61 down 62 command and enter the threshold metric up 1 down 2 command. 

D. Under the interface vlan 10 configuration delete the standby 10 track1 decrement 60 command and enter the standby 10 track 10 decrement 60 command. 

Answer:

Explanation: 

On DSW1, related to HSRP, under VLAN 10 change the given track 1 command to instead use the track 10 command. 


Q25. - (Topic 21) 

The implementation group has been using the test bed to do an IPv6 'proof-of-concept1. After several changes to the network addressing and routing schemes, a trouble ticket has been opened indicating that the loopback address on R1 (2026::111:1) is not able to ping the loopback address on DSW2 (2026::102:1).

The fault condition is related to which technology?

A. NTP

B. IPv4 OSPF Routing

C. IPv6 OSPF Routing

D. IPV4 and IPV6 Interoperability

E. IPv4 layer 3 security

Answer: D

Explanation:

Answer: D

As explained earlier, the problem is with route misconfigured tunnel modes on R3. R3 is using tunnel mode ipv6, while R4 is using the default of GRE.


Q26. - (Topic 21) 

The implementation group has been using the test bed to do an IPv6 'proof-of-concept1. After several changes to the network addressing and routing schemes, a trouble ticket has been opened indicating that the loopback address on R1 (2026::111:1) is not able to ping the loopback address on DSW2 (2026::102:1).

Use the supported commands to isolate the cause of this fault and answer the following question.

What is the solution to the fault condition?

A. Under the interface Tunnel34 configuration delete the tunnel mode ipv6 command.

B. Under the interface Serial0/0/0.34 configuration enter the ipv6 address 2026::34:1/122 command.

C. Under the interface Tunnel34 configuration enter the ip address unnumbered Serial0/0/0.34 command.

D. Under the interface Tunnel34 configuration delete the tunnel source Serial0/0/0.34 command and enter the tunnel source 2026::34:1/122 command.

Answer: A

Explanation:

As explained earlier, the problem is with route misconfigured tunnel modes on R3. R3 is using tunnel mode ipv6, while R4 is using the default of GRE. We need to remove the "tunnel mode ipv6" command under interface Tunnel34


Q27. - (Topic 10) 

The implementations group has been using the test bed to do a ‘proof-of-concept' that requires both Client 1 and Client 2 to access the WEB Server at 209.65.200.241. After several changes to the network addressing, routing scheme, DHCP services, NTP services, layer 2 connectivity, FHRP services, and device security, a trouble ticket has been opened indicating that Client 1 cannot ping the 209.65.200.241 address. 

Use the supported commands to isolated the cause of this fault and answer the following questions. 

The fault condition is related to which technology? 

A. BGP 

B. NTP 

C. IP NAT 

D. IPv4 OSPF Routing 

E. IPv4 OSPF Redistribution 

F. IPv6 OSPF Routing 

G. IPv4 layer 3 security 

Answer:

Explanation: 

On R1 we need to add the client IP address for reachability to server to the access list that is used to specify which hosts get NATed. 

Topic 11, Ticket 6 : R1 ACL 

Topology Overview (Actual Troubleshooting lab design is for below network design) 

. Client Should have IP 10.2.1.3 

. EIGRP 100 is running between switch DSW1 & DSW2 

. OSPF (Process ID 1) is running between R1, R2, R3, R4 

. Network of OSPF is redistributed in EIGRP 

. BGP 65001 is configured on R1 with Webserver cloud AS 65002 

. HSRP is running between DSW1 & DSW2 Switches 

The company has created the test bed shown in the layer 2 and layer 3 topology exhibits. 

This network consists of four routers, two layer 3 switches and two layer 2 switches. 

In the IPv4 layer 3 topology, R1, R2, R3, and R4 are running OSPF with an OSPF process number 1. 

DSW1, DSW2 and R4 are running EIGRP with an AS of 10. Redistribution is enabled where necessary. 

R1 is running a BGP AS with a number of 65001. This AS has an eBGP connection to AS 65002 in the ISP's network. Because the company's address space is in the private range. 

R1 is also providing NAT translations between the inside (10.1.0.0/16 & 10.2.0.0/16) networks and outside (209.65.0.0/24) network. 

ASW1 and ASW2 are layer 2 switches. 

NTP is enabled on all devices with 209.65.200.226 serving as the master clock source. 

The client workstations receive their IP address and default gateway via R4's DHCP server. 

The default gateway address of 10.2.1.254 is the IP address of HSRP group 10 which is running on DSW1 and DSW2. 

In the IPv6 layer 3 topology R1, R2, and R3 are running OSPFv3 with an OSPF process number 6. 

DSW1, DSW2 and R4 are running RIPng process name RIP_ZONE. 

The two IPv6 routing domains, OSPF 6 and RIPng are connected via GRE tunnel running over the underlying IPv4 OSPF domain. Redistribution is enabled where necessary. 

Recently the implementation group has been using the test bed to do a ‘proof-of-concept' on several implementations. This involved changing the configuration on one or more of the devices. You will be presented with a series of trouble tickets related to issues introduced during these configurations. 

Note: Although trouble tickets have many similar fault indications, each ticket has its own issue and solution. 

Each ticket has 3 sub questions that need to be answered & topology remains same. 

Question-1 Fault is found on which device, 

Question-2 Fault condition is related to, 

Question-3 What exact problem is seen & what needs to be done for solution 

Client is unable to ping IP 209.65.200.241… 

Solution 

Steps need to follow as below:-

. When we check on client 1 & Client 2 desktop we are not receiving DHCP address from R4 

. Ipconfig ----- Client will be receiving IP address 10.2.1.3 

. IP 10.2.1.3 will be able to ping from R4 , R3, R2, R1 

. Look for BGP Neighbourship 

. Sh ip bgp summary ----- State of BGP will be in active state. This means connectivity issue between serial 

. Check for running config. i.e sh run --- over here check for access-list configured on interface as BGP is down (No need to check for NAT configuration as its configuration should be right as first need to bring BGP up) 

. In above snapshot we can see that access-list of edge_security on R1 is not allowing wan IP network 

. Change required: On R1, we need to permit IP 209.65.200.222/30 under the access list. 


Q28. - (Topic 12) 

The implementations group has been using the test bed to do a ‘proof-of-concept' that requires both Client 1 and Client 2 to access the WEB Server at 209.65.200.241. After several changes to the network addressing, routing scheme, DHCP services, NTP services, layer 2 connectivity, FHRP services, and device security, a trouble ticket has been opened indicating that Client 1 cannot ping the 209.65.200.241 

address. 

Use the supported commands to isolated the cause of this fault and answer the following questions. 

On which device is the fault condition located? 

A. R1 

B. R2 

C. R3 

D. R4 

E. DSW1 

F. DSW2 

G. ASW1 

H. ASW2 

Answer:

Explanation: 

port security needs is configured on ASW1. 


Q29. - (Topic 20) 

The implementation group has been using the test bed to do an IPv6 'proof-of-concept1.

After several changes to the network addressing and routing schemes, a trouble ticket has been opened indicating that the loopback address on R1 (2026::111:1) is not able to ping the loopback address on DSW2 (2026::102:1).

Use the supported commands to isolate the cause of this fault and answer the following question.

On which device is the fault condition located?

A. R1

B. R2

C. R3

D. R4

E. DSW1

F. DSW2

G. ASW1

H. ASW2

Answer: D

Explanation:

Start to troubleshoot this by pinging the loopback IPv6 address of DSW2 (2026::102:1). This can be pinged from DSW1, and R4, but not R3 or any other devices past that point. If we look at the diagram, we see that R4 is redistributing the OSPF and RIP IPV6 routes. However, looking at the routing table we see that R4 has the 2026::102 network in the routing table known via RIP, but that R3 does not have the route:

When we look more closely at the configuration of R4, we see that it is redistributing OSPF routes into RIP for IPv6, but the RIP routes are not being redistributed into OSPF. That is why R3 sees R4 as an IPV6 OSPF neighbor, but does not get the 2026::102 network installed.

So, problem is with route redistribution on R4.


Q30. - (Topic 17) 

The implementations group has been using the test bed to do a ‘proof-of-concept' 

that requires both Client 1 and Client 2 to access the WEB Server at 209.65.200.241. After several changes to the network addressing, routing schemes, DHCP services, NTP services, layer 2 connectivity, FHRP services, and device security, a trouble ticket has been opened DSW1 will not become the active router for HSRP group 10. 

Use the supported commands to isolated the cause of this fault and answer the following questions. 

The fault condition is related to which technology? 

A. NTP 

B. HSRP 

C. IP DHCP Helper 

D. IPv4 EIGRP Routing 

E. IPv6 RIP Routing 

F. IPv4 layer 3 security 

G. Switch-to-Switch Connectivity 

H. Loop Prevention 

I. Access Vlans 

Answer:

Explanation: 

On DSW1, related to HSRP, under VLAN 10 change the given track 1 command to instead use the track 10 command.