We have been the very best in introducing probably the most helpful 300-135 equipment for our clients that may undoubtedly help to make they will reach your goals in the real Cisco 300-135 test. A perfect Cisco guide features a splendid as well as preparatory substance that prepares an individual totally and offers the confidence of the achievement which isnt a bit factor. Just down load the particular Ucertify 300-135 Troubleshooting and Maintaining Cisco IP Networks (TSHOOT) free demonstration features to determine the options and degree of Ucertify products. You will end up influenced from your 300-135 research guide pdf certainly. In the event you action any 100% victory, utilizing Ucertify 300-135 for the Troubleshooting and Maintaining Cisco IP Networks (TSHOOT) certified preparation is the greatest choice.

2021 Jun pentax 50-135 vs 55-300:

Q21. - (Topic 4) 

Scenario: 

You have been asked by your customer to help resolve issues in their routed network. Their network engineer has deployed HSRP. On closer inspection HSRP doesn't appear to be operating properly and it appears there are other network problems as well. You are to provide solutions to all the network problems. 


Examine the configuration on R5. Router R5 do not see any route entries learned from R4; what could be the issue? 

A. HSRP issue between R5 and R4 

B. There is an OSPF issue between R5and R4 

C. There is a DHCP issue between R5 and R4 

D. The distribute-list configured on R5 is blocking route entries 

E. The ACL configured on R5 is blocking traffic for the subnets advertised from R4. 

Answer: B 

Explanation: 

If we issue the "show ip route" and "show ip ospf neighbor" commands on R5, we see that there are no learned OSPF routes and he has no OSPF neighbors. 


Q22. - (Topic 7) 

The implementations group has been using the test bed to do a ‘proof-of-concept' that requires both Client 1 and Client 2 to access the WEB Server at 209.65.200.241. After several changes to the network addressing, routing scheme, DHCP services, NTP services, layer 2 connectivity, FHRP services, and device security, a trouble ticket has been opened indicating that Client 1 cannot ping the 209.65.200.241 address. 

Use the supported commands to isolated the cause of this fault and answer the following questions. 

What is the solution to the fault condition? 

A. In Configuration mode, using the interface range Fastethernet 1/0/1 – 2, then switchport mode access vlan 10 command. 

B. In Configuration mode, using the interface range Fastethernet 1/0/1 – 2, then switchport access mode vlan 10 command. 

C. In Configuration mode, using the interface range Fastethernet 1/0/1 – 2, then switchport vlan 10 access command. 

D. In Configuration mode, using the interface range Fastethernet 1/0/1 – 2, then switchport access vlan 10 command. 

Answer: D 

Explanation: 

The problem here is that VLAN 10 is not configured on the proper interfaces on switch ASW1. 


Q23. - (Topic 14) 

The implementations group has been using the test bed to do a ‘proof-of-concept' that requires both Client 1 and Client 2 to access the WEB Server at 209.65.200.241. After several changes to the network addressing, routing scheme, DHCP services, NTP services, layer 2 connectivity, FHRP services, and device security, a trouble ticket has been opened indicating that Client 1 cannot ping the 209.65.200.241 address. 

Use the supported commands to isolated the cause of this fault and answer the following questions. 

The fault condition is related to which technology? 

A. NTP 

B. IP DHCP Server 

C. IPv4 OSPF Routing 

D. IPv4 EIGRP Routing 

E. IPv4 Route Redistribution 

F. IPv6 RIP Routing 

G. IPv6 OSPF Routing 

H. IPv4 and IPv6 Interoperability 

I. IPv4 layer 3 security 

Answer: D 

Explanation: 

On R4, IPV4 EIGRP Routing, need to change the EIGRP AS number from 1 to 10 since DSW1 & DSW2 is configured to be in EIGRP AS number 10. 


Topic 15, Ticket 10 : VLAN Access Map 

Topology Overview (Actual Troubleshooting lab design is for below network design) 

. Client Should have IP 10.2.1.3 

. EIGRP 100 is running between switch DSW1 & DSW2 

. OSPF (Process ID 1) is running between R1, R2, R3, R4 

. Network of OSPF is redistributed in EIGRP 

. BGP 65001 is configured on R1 with Webserver cloud AS 65002 

. HSRP is running between DSW1 & DSW2 Switches 

The company has created the test bed shown in the layer 2 and layer 3 topology exhibits. 

This network consists of four routers, two layer 3 switches and two layer 2 switches. 

In the IPv4 layer 3 topology, R1, R2, R3, and R4 are running OSPF with an OSPF process number 1. 

DSW1, DSW2 and R4 are running EIGRP with an AS of 10. Redistribution is enabled where necessary. 

R1 is running a BGP AS with a number of 65001. This AS has an eBGP connection to AS 65002 in the ISP's network. Because the company's address space is in the private range. 

R1 is also providing NAT translations between the inside (10.1.0.0/16 & 10.2.0.0/16) networks and outside (209.65.0.0/24) network. 

ASW1 and ASW2 are layer 2 switches. 

NTP is enabled on all devices with 209.65.200.226 serving as the master clock source. 

The client workstations receive their IP address and default gateway via R4's DHCP server. 

The default gateway address of 10.2.1.254 is the IP address of HSRP group 10 which is running on DSW1 and DSW2. 

In the IPv6 layer 3 topology R1, R2, and R3 are running OSPFv3 with an OSPF process number 6. 

DSW1, DSW2 and R4 are running RIPng process name RIP_ZONE. 

The two IPv6 routing domains, OSPF 6 and RIPng are connected via GRE tunnel running over the underlying IPv4 OSPF domain. Redistrution is enabled where necessary. 

Recently the implementation group has been using the test bed to do a ‘proof-of-concept' on several implementations. This involved changing the configuration on one or more of the devices. You will be presented with a series of trouble tickets related to issues introduced during these configurations. 

Note: Although trouble tickets have many similar fault indications, each ticket has its own issue and solution. 

Each ticket has 3 sub questions that need to be answered & topology remains same. 

Question-1 Fault is found on which device, 

Question-2 Fault condition is related to, 

Question-3 What exact problem is seen & what needs to be done for solution 



Client 1 is unable to ping IP 209.65.200.241 

Solution 

Steps need to follow as below:-

. When we check on client 1 & Client 2 desktop we are not receiving DHCP address from R4 

ipconfig ----- Client will be receiving IP address 10.2.1.3 

. From Client PC we can ping 10.2.1.254…. 

. But IP 10.2.1.3 is not able to ping from R4, R3, R2, R1 



. Change required: On DSW1, VALN ACL, Need to delete the VLAN access-map test1 whose action is to drop access-list 10; specifically 10.2.1.3 


Q24. - (Topic 18) 

The implementations group has been using the test bed to do a ‘proof-of-concept' that requires both Client 1 and Client 2 to access the WEB Server at 209.65.200.241. After several changes to the network addressing, routing schemes, DHCP services, NTP services, layer 2 connectivity, FHRP services, and device security, a trouble ticket has been opened indicating that Client 1 cannot ping the 209.65.200.241 

address. 

Use the supported commands to isolate the cause of this fault and answer the following question. 

What is the solution to the fault condition? 

A. Under the global configuration, delete the no ip dhcp use vrf connected command. 

B. Under the IP DHCP pool configuration, delete the default -router 10.2.1.254 command and enter the default-router 10.1.4.5 command. 

C. Under the IP DHCP pool configuration, delete the network 10.2.1.0 255.255.255.0 command and enter the network 10.1.4.0 255.255.255.0 command. 

D. Under the IP DHCP pool configuration, issue the no ip dhcp excluded-address 10.2.1.1 

10.2.1.253 command and enter the ip dhcp excluded-address 10.2.1.1 10.2.1.2 command. 

Answer: D 

Explanation: 

On R4 the DHCP IP address is not allowed for network 10.2.1.0/24 which clearly shows the problem lies on R4 & the problem is with DHCP 


Q25. - (Topic 17) 

The implementations group has been using the test bed to do a ‘proof-of-concept' that requires both Client 1 and Client 2 to access the WEB Server at 209.65.200.241. After several changes to the network addressing, routing schemes, DHCP services, NTP services, layer 2 connectivity, FHRP services, and device security, a trouble ticket has been opened DSW1 will not become the active router for HSRP group 10. 

Use the supported commands to isolated the cause of this fault and answer the following questions. 

What is the solution to the fault condition? 

A. Under the interface vlan 10 configuration enter standby 10 preempt command. 

B. Under the track 1 object configuration delete the threshold metric up 1 down 2 command and enter the threshold metric up 61 down 62 command. 

C. Under the track 10 object configuration delete the threshold metric up 61 down 62 command and enter the threshold metric up 1 down 2 command. 

D. Under the interface vlan 10 configuration delete the standby 10 track1 decrement 60 command and enter the standby 10 track 10 decrement 60 command. 

Answer: D 

Explanation: 

On DSW1, related to HSRP, under VLAN 10 change the given track 1 command to instead use the track 10 command. 


2passeasy.com

Update tshoot 300-135 official cert guide:

Q26. - (Topic 2) 

A customer network engineer has made configuration changes that have resulted in some loss of connectivity. You have been called in to evaluate a switch network and suggest resolutions to the problems. 


You have configured PVST+ load balancing between SW1 and the New_Switch in such a way that both the links E2/2 and E2/3 are utilized for traffic flow, which component of the configuration is preventing PVST+ load balancing between SW1 and SW2 links 

A. Port priority configuration on SW1 

B. Port priority configuration on the New_Switch 

C. Path cost configuration on SW1 

D. Path cost configuration on the New_Switch 

Answer: D 

Explanation: 

Here is the configuration found on the New_Switch: 


This causes the port cost for link eth 1/3 to increase the path cost to 250 for all VLANs, making that link less preferred so that only eth 1/2 will be used. 


Topic 3, Troubleshooting EIGRP 

11. - (Topic 3) 

Scenario: 

You have been brought in to troubleshoot an EIGRP network. You have resolved the initial issue between routers R2 and R4, but another issue remains. You are to locate the problem and suggest solution to resolve the issue. 

The customer has disabled access to the show running-config command. 


The network segment between R2 and R4 has become disconnected from the remainder of the network. How should this issue be resolved? 

A. Change the autonomous system number in the remainder of the network to be consistent with R2 and R4. 

B. Move the 192.168.24.0 network to the EIGRP 1 routing process in R2 and R4. 

C. Enable the R2 and R4 router interfaces connected to the 192.168.24.0 network. 

D. Remove the distribute-list command from the EIGRP 200 routing process in R2. 

E. Remove the distribute-list command from the EIGRP 100 routing process in R2. 

Answer: B 

Explanation: 

When issuing the "show ip eigrp neighbor" command (which is about the only command that it lets you do in this question) you will see that all other routers are configured for EIGRP AS 1. However, the 192.16824.0 network between R2 and R4 is incorrectly configured for EIGRP AS 100: 


Q27. - (Topic 13) 

The implementations group has been using the test bed to do a ‘proof-of-concept' that requires both Client 1 and Client 2 to access the WEB Server at 209.65.200.241. After several changes to the network addressing, routing scheme, DHCP services, NTP services, layer 2 connectivity, FHRP services, and device security, a trouble ticket has been opened indicating that Client 1 cannot ping the 209.65.200.241 address. 

Use the supported commands to isolated the cause of this fault and answer the following questions. 

Which is the solution to the fault condition? 

A. Under the EIGRP process, delete the redistribute ospf 1 route-map OSPF_ to_ EIGRP command and enter the redistribute ospf 1 route-map OSPF - > EIGRP command. 

B. Under the EIGRP process, delete the redistribute ospf 1 route-map OSPF_ to_ EIGRP command and enter the redistribute ospf 6 metric route-map OSPF - > EIGRP command. 

C. Under the OSPF process, delete the redistribute eigrp10 subnets route-map EIGPR ->OSPF command and enter the redistribute eigrp10 subnets route-map OSPF - > EIGRP command. 

D. Under the OSPF process, delete the redistribute eigrp10 subnets route-map EIGPR ->OSPF command and enter the redistribute eigrp10 subnets route-map EIGPR - > OSPF command. 

E. Under the EIGRP process, delete the redistribute ospf 1 route-map OSPF _to_ EIGRP command and enter redistribute ospf 1 metric 100000 100 100 1 15000 route_ map OSPF _to _EIGRP command 

Answer: A 

Explanation: 

On R4, in the redistribution of EIGRP routing protocol, we need to change name of route-map to resolve the issue. It references route-map OSPF_to_EIGRP but the actual route map is called OSPF->EIGRP. 


Topic 14, Ticket 9 : EIGRP AS number 

Topology Overview (Actual Troubleshooting lab design is for below network design) 

. Client Should have IP 10.2.1.3 

. EIGRP 100 is running between switch DSW1 & DSW2 

. OSPF (Process ID 1) is running between R1, R2, R3, R4 

. Network of OSPF is redistributed in EIGRP 

. BGP 65001 is configured on R1 with Webserver cloud AS 65002 

. HSRP is running between DSW1 & DSW2 Switches 

The company has created the test bed shown in the layer 2 and layer 3 topology exhibits. 

This network consists of four routers, two layer 3 switches and two layer 2 switches. 

In the IPv4 layer 3 topology, R1, R2, R3, and R4 are running OSPF with an OSPF process number 1. 

DSW1, DSW2 and R4 are running EIGRP with an AS of 10. Redistribution is enabled where necessary. 

R1 is running a BGP AS with a number of 65001. This AS has an eBGP connection to AS 65002 in the ISP's network. Because the company's address space is in the private range. 

R1 is also providing NAT translations between the inside (10.1.0.0/16 & 10.2.0.0/16) networks and outside (209.65.0.0/24) network. 

ASW1 and ASW2 are layer 2 switches. 

NTP is enabled on all devices with 209.65.200.226 serving as the master clock source. 

The client workstations receive their IP address and default gateway via R4's DHCP server. 

The default gateway address of 10.2.1.254 is the IP address of HSRP group 10 which is running on DSW1 and DSW2. 

In the IPv6 layer 3 topology R1, R2, and R3 are running OSPFv3 with an OSPF process number 6. 

DSW1, DSW2 and R4 are running RIPng process name RIP_ZONE. 

The two IPv6 routing domains, OSPF 6 and RIPng are connected via GRE tunnel running over the underlying IPv4 OSPF domain. Redistrution is enabled where necessary. 

Recently the implementation group has been using the test bed to do a ‘proof-of-concept' on several implementations. This involved changing the configuration on one or more of the devices. You will be presented with a series of trouble tickets related to issues introduced during these configurations. 

Note: Although trouble tickets have many similar fault indications, each ticket has its own issue and solution. 

Each ticket has 3 sub questions that need to be answered & topology remains same. 

Question-1 Fault is found on which device, 

Question-2 Fault condition is related to, 

Question-3 What exact problem is seen & what needs to be done for solution 



Client is unable to ping IP 209.65.200.241 

Solution 

Steps need to follow as below:-

. When we check on client 1 & Client 2 desktop we are not receiving DHCP address from R4 

ipconfig ----- Client will be receiving IP address 10.2.1.3 

. From Client PC we can ping 10.2.1.254 

. But IP 10.2.1.3 is not able to ping from R4, R3, R2, R1 . 

. This clearly shows problem at R4 Kindly check routes in EIGRP there are no routes of eigrp. 

. Check the neighborship of EIGRP on R4; there are no neighbor seen from DSW1 & DSW2 check the running config of EIGRP protocol it shows EIGRP AS 1 process…. Now check on DSW1 & DSW2 

On DSW1 only one Eigrp neighbour is there with DSW2 but its not with R4… 


. From above snapshot & since R4 has EIGRP AS number 1 due to which neighbour is not happening. 

. Change required: On R4, IPV4 EIGRP Routing, need to change the EIGRP AS number from 1 to 10 since DSW1 & DSW2 is configured to be in EIGRP AS number 10. 


Q28. - (Topic 18) 

The implementations group has been using the test bed to do a ‘proof-of-concept' that requires both Client 1 and Client 2 to access the WEB Server at 209.65.200.241. After several changes to the network addressing, routing schemes, DHCP services, NTP services, layer 2 connectivity, FHRP services, and device security, a trouble ticket has been opened indicating that Client 1 cannot ping the 209.65.200.241 address. 

Use the supported commands to isolate the cause of this fault and answer the following question. 

On which device is the fault condition located? 

A. R1 

B. R2 

C. R3 

D. R4 

E. DSW1 

F. DSW2 

G. ASW1 

H. ASW2 

Answer: D 

Explanation: 

On R4 the DHCP IP address is not allowed for network 10.2.1.0/24 which clearly shows the problem lies on R4 & the problem is with DHCP 


Q29. - (Topic 12) 

The implementations group has been using the test bed to do a ‘proof-of-concept' that requires both Client 1 and Client 2 to access the WEB Server at 209.65.200.241. After several changes to the network addressing, routing scheme, DHCP services, NTP services, layer 2 connectivity, FHRP services, and device security, a trouble ticket has been opened indicating that Client 1 cannot ping the 209.65.200.241 address. 

Use the supported commands to isolated the cause of this fault and answer the following questions. 

What is the solution to the fault condition? 

A. In Configuration mode, using the interface range Fa 1/0/1 – 2, then no switchport port-security interface configuration commands. Then in exec mode clear errdisable interface fa 1/01 – 2 vlan 10 command 

B. In Configuration mode, using the interface range Fa 1/0/1 – 2, then no switchport port-security, followed by shutdown, no shutdown interface configuration commands. 

C. In Configuration mode, using the interface range Fa 1/0/1 – 2, then no switchport port-security interface configuration commands. 

D. In Configuration mode, using the interface range Fa 1/0/1 – 2, then no switchport port-security interface configuration commands. Then in exec mode clear errdisable interface fa 1/0/1, then clear errdisable interface fa 1/0/2 commands. 

Answer: B 

Explanation: 

On ASW1, we need to remove port-security under interface fa1/0/1 & fa1/0/2. 

Reference: http://www.cisco.com/en/US/tech/ABC389/ABC621/technologies_tech_note09186a00806c d87b.shtml 


Q30. - (Topic 16) 

The implementations group has been using the test bed to do a ‘proof-of-concept'. After several changes to the network addressing, routing schemes, a trouble ticket has been opened indicating that the loopback address on R1 (2026::111:1) is not able to ping the loopback address on DSW2(2026::102:1). 

Use the supported commands to isolated the cause of this fault and answer the following questions. 

What is the solution to fault condition? 

A. Under the interface Serial 0/0/0.23 configuration enter the ipv6 ospf 6 area 0 command. 

B. Under the interface Serial0/0/0.12 configuration enter the ipv6 ospf 6 area 12 command. 

C. Under ipv6 router ospf 6 configuration enter the network 2026::1:/122 area 0 command. 

D. Under ipv6 router ospf 6 configuration enter no passive-interface default command. 

Answer: A 

Explanation: 

On R2, IPV6 OSPF routing, configuration is required to add ipv6 ospf 6 area 0 under interface serial 0/0/0.23